
Principal Component Analysis 
(PCA) 

 
 Theory, Practice, and Examples 



Data Reduction 
• summarization of data with many (p) 
variables by a smaller set of (k) derived 
(synthetic, composite) variables. 
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Data Reduction 

• “Residual” variation is information in A 
that is not retained in X 

• balancing act between 
– clarity of representation, ease of 
understanding 

– oversimplification: loss of important or 
relevant information. 

 



Principal Component Analysis 
(PCA) 

• probably the most widely-used and well-
known of the “standard” multivariate 
methods 

• invented by Pearson (1901) and 
Hotelling (1933) 

• first applied in ecology by Goodall 
(1954) under the name “factor analysis” 
(“principal factor analysis” is a synonym of PCA). 

 



Principal Component Analysis 
(PCA) 

• takes a data matrix of n objects by p 
variables, which may be correlated, and 
summarizes it by uncorrelated axes 
(principal components or principal axes) 
that are linear combinations of the 
original p variables 

• the first k components display as much 
as possible of the variation among 
objects. 

 



Geometric Rationale of PCA 
• objects are represented as a cloud of n 
points in a multidimensional space with 
an axis for each of the p variables 

• the centroid of the points is defined by 
the mean of each variable 

• the variance of each variable is the 
average squared deviation of its n 
values around the mean of that 
variable. 
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Geometric Rationale of PCA 
• degree to which the variables are 
linearly correlated is represented by 
their covariances. 
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Geometric Rationale of PCA 
• objective of PCA is to rigidly rotate the 
axes of this p-dimensional space to new 
positions (principal axes) that have the 
following properties: 
– ordered such that principal axis 1 has the 
highest variance, axis 2 has the next 
highest variance, .... , and axis p has the 
lowest variance 

– covariance among each pair of the principal 
axes is zero (the principal axes are 
uncorrelated). 
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2D Example of PCA 
• variables X1 and X2 have positive covariance & each 

has a similar variance. 
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Configuration is Centered 

• each variable is adjusted to a mean of 
zero (by subtracting the mean from each value). 
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Principal Components are Computed 
• PC 1 has the highest possible variance (9.88) 
• PC 2 has a variance of 3.03 
• PC 1 and PC 2 have zero covariance. 



The Dissimilarity Measure Used in PCA 
is Euclidean Distance 

• PCA uses Euclidean Distance calculated 
from the p variables as the measure of 
dissimilarity among the n objects 

• PCA derives the best possible k 
dimensional (k < p) representation of the 
Euclidean distances among objects.  



Generalization to p-dimensions 
• In practice nobody uses PCA with only 2 
variables 

• The algebra for finding principal axes 
readily generalizes to p variables 

• PC 1 is the direction of maximum 
variance in the p-dimensional cloud of 
points 

• PC 2 is in the direction of the next 
highest variance, subject to the 
constraint that it has zero covariance 
with PC 1. 



Generalization to p-dimensions 
• PC 3 is in the direction of the next 
highest variance, subject to the 
constraint that it has zero covariance 
with both PC 1 and PC 2 

• and so on... up to PC p 
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• each principal axis is a linear combination of the 
original two variables 

• extended to p dimensions: PCi = ai1X1 + ai2X2 + … ainXp 
• aij’s are the coefficients for PC factor i, multiplied by 

the measured value for variable j  
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• PC axes are a rigid rotation of the original variables 

• PC 1 is simultaneously the direction of maximum 
variance and a least-squares “line of best fit” 
(squared distances of points away from PC 1 are 
minimized). 

 



Generalization to p-dimensions 
• if we take the first k principal components, 

they define the k-dimensional “hyperplane of 
best fit” to the point cloud 

• of the total variance of all p variables: 
– PCs 1 to k represent the maximum possible proportion 

of that variance that can be displayed in k 
dimensions 

– i.e. the squared Euclidean distances among points 
calculated from their coordinates on PCs 1 to k are 
the best possible representation of their squared 
Euclidean distances in the full p dimensions.  



Covariance vs Correlation 
• using covariances among variables only 
makes sense if they are measured in the 
same units 

• even then, variables with high variances 
will dominate the principal components 

• these problems are generally avoided by 
standardizing each variable to unit 
variance and zero mean.  
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Covariance vs Correlation 
• covariances between the standardized 
variables are correlations 

• after standardization, each variable has a 
variance of 1.000 

• correlations can be also calculated from 
the variances and covariances: 
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The Algebra of PCA 
• first step is to calculate the cross-
products matrix of variances and 
covariances (or correlations) among every 
pair of the p variables 

• square, symmetric matrix 

• diagonals are the variances, off-diagonals 
are the covariances. 

   X1 X2 

X
1
 6.6707 3.4170 

X
2
 3.4170 6.2384 

  X1 X2 

X
1
 1.0000 0.5297 

X
2
 0.5297 1.0000 

Variance-covariance Matrix Correlation Matrix 



The Algebra of PCA 
• in matrix notation, this is computed as 

 

 
• where X is the n x p data matrix, with 
each variable centered (also standardized by SD 

if using correlations).  

   X1 X2 

X
1
 6.6707 3.4170 

X
2
 3.4170 6.2384 

  X1 X2 

X
1
 1.0000 0.5297 

X
2
 0.5297 1.0000 

Variance-covariance Matrix Correlation Matrix 

XXS 



Manipulating Matrices 

• transposing:  could change the columns to 
rows or the rows to columns 
 

 

 

• multiplying matrices 
– must have the same number of columns in the 
premultiplicand matrix as the number of rows 
in the postmultiplicand matrix 

X =   10 0 4 
         7 1 2 

X’ =   10 7 
         0 1 
         4 2 



The Algebra of PCA 
• sum of the diagonals of the variance-
covariance matrix is called the trace 

• it represents the total variance in the 
data 

• it is the mean squared Euclidean distance 
between each object and the centroid in 
p-dimensional space. 

   X1 X2 

X
1
 6.6707 3.4170 

X
2
 3.4170 6.2384 

  X1 X2 

X
1
 1.0000 0.5297 

X
2
 0.5297 1.0000 

Trace = 12.9091 Trace = 2.0000 



The Algebra of PCA 
• finding the principal axes involves 
eigenanalysis of the cross-products 
matrix (S) 

• the eigenvalues (latent roots) of S are 
solutions () to the characteristic 
equation 
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The Algebra of PCA 
• the eigenvalues, 1, 2, ... p  are the 
variances of the coordinates on each 
principal component axis 

• the sum of all p eigenvalues equals the 
trace of S (the sum of the variances of 
the original variables). 

   X1 X2 

X
1
 6.6707 3.4170 

X
2
 3.4170 6.2384 

1 = 9.8783 

2 = 3.0308 

 

Note: 1+2 =12.9091 
Trace = 12.9091 



The Algebra of PCA 
• each eigenvector consists of p values 
which represent the “contribution” of 
each variable to the principal component 
axis  

• eigenvectors are uncorrelated (orthogonal)  
– their cross-products are zero. 

 
  u1 u2 

X
1
 0.7291 -0.6844 

X
2
 0.6844 0.7291 

Eigenvectors 

0.7291*(-0.6844) + 0.6844*0.7291 = 0 



The Algebra of PCA 
• assume there are n data objects, each 
with p attributes  data matrix X 

• the coordinates of each object i on the 
kth principal axis, known as the scores on 
PC k, are computed as 

 

 
• where Z is the n x k matrix of PC scores, 
X is the n x p centered data matrix and 
U is the p x k matrix of eigenvectors. 

pipkikikki xuxuxuz  2211



The Algebra of PCA 
• variance of the scores on each PC axis is 
equal to the corresponding eigenvalue for 
that axis 

• the eigenvalue represents the variance 
displayed (“explained” or “extracted”) by 
the kth axis 

• the sum of the first k eigenvalues is the 
variance explained by the k-dimensional 
ordination. 
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1 = 9.8783   2 = 3.0308   Trace = 12.9091 
 
PC 1 displays (“explains”)  
9.8783/12.9091 = 76.5% of the total variance 



The Algebra of PCA 
• The cross-products matrix computed 
among the p principal axes has a simple 
form: 
– all off-diagonal values are zero (the principal 
axes are uncorrelated) 

– the diagonal values are the eigenvalues. 

   PC1 PC2 

PC
1
 9.8783 0.0000 

PC
2
 0.0000 3.0308 

Variance-covariance Matrix 

of the PC axes 



A more challenging example 
• data from research on habitat definition 
in the endangered Baw Baw frog 

• 16 environmental and structural variables 
measured at each of 124 sites 

• correlation matrix used because variables 
have different units 

Philoria frosti 



Axis Eigenvalue 
% of 

Variance 
Cumulative % 
of Variance 

1 5.855 36.60 36.60 

2 3.420 21.38 57.97 

3 1.122 7.01 64.98 

4 1.116 6.97 71.95 

5 0.982 6.14 78.09 

6 0.725 4.53 82.62 

7 0.563 3.52 86.14 

8 0.529 3.31 89.45 

9 0.476 2.98 92.42 

10 0.375 2.35 94.77 

Eigenvalues 



How many axes are needed? 
• does the (k+1)th principal axis represent 
more variance than would be expected 
by chance? 

• several tests and rules have been 
proposed 

• a common “rule of thumb” when PCA is 
based on correlations is that axes with 
eigenvalues > 1 are worth interpreting 

• in our example 4 Eigenvectors fit this 
criterion (we shall keep 3 for simplicity) 

 



Baw Baw Frog - PCA of 16 Habitat Variables
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Interpreting Eigenvectors 

• correlations 
between variables 
and the principal 
axes are known as 
loadings 

• each element of 
the eigenvectors 
represents the 
contribution of a 
given variable to a 
component 

• the loadings of 
variables on the 
first three PCs 
are shown here 

  PC 1 PC 2 PC 3 

Altitude 0.3842 0.0659 -0.1177 

pH -0.1159 0.1696 -0.5578 

Cond -0.2729 -0.1200 0.3636 

TempSurf 0.0538 -0.2800 0.2621 

Relief -0.0765 0.3855 -0.1462 

maxERht 0.0248 0.4879 0.2426 

avERht 0.0599 0.4568 0.2497 

%ER 0.0789 0.4223 0.2278 

%VEG 0.3305 -0.2087 -0.0276 

%LIT -0.3053 0.1226 0.1145 

%LOG -0.3144 0.0402 -0.1067 

%W -0.0886 -0.0654 -0.1171 

H1Moss 0.1364 -0.1262 0.4761 

DistSWH -0.3787 0.0101 0.0042 

DistSW -0.3494 -0.1283 0.1166 

DistMF 0.3899 0.0586 -0.0175 



Significance of Variables 

• we can compute the significance of the 
variables as the sum of squared loadings on to 
the most significant Eigenvectors we selected (3 
in our example)  

• the next slide shows the table of the last slide 
expanded with these squared loadings 

• we can then sort the table by the squared 
loadings and make a scree plot 

• the most significant variables are those above 
some chosen cutoff, for example 0.4 (marked in 
yellow in the table)  

 



Significance of Variables 
  PC 1 PC 2 PC 3 

sum of squared 
loadings   

Altitude 0.3842 0.0659 -0.1177 0.41 

pH -0.1159 0.1696 -0.5578 0.59 

Cond -0.2729 -0.1200 0.3636 0.47 

TempSurf 0.0538 -0.2800 0.2621 0.39 

Relief -0.0765 0.3855 -0.1462 0.42 

maxERht 0.0248 0.4879 0.2426 0.55 

avERht 0.0599 0.4568 0.2497 0.52 

%ER 0.0789 0.4223 0.2278 0.49 

%VEG 0.3305 -0.2087 -0.0276 0.39 

%LIT -0.3053 0.1226 0.1145 0.35 

%LOG -0.3144 0.0402 -0.1067 0.33 

%W -0.0886 -0.0654 -0.1171 0.16 

H1Moss 0.1364 -0.1262 0.4761 0.51 

DistSWH -0.3787 0.0101 0.0042 0.38 

DistSW -0.3494 -0.1283 0.1166 0.39 

DistMF 0.3899 0.0586 -0.0175 0.39 



Significance of Variables 

• Scree plot   
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